Differential effects of extracellular ATP on chloride transport in cortical collecting duct cells.
نویسندگان
چکیده
Extracellular ATP in the cortical collecting duct can inhibit epithelial sodium channels (ENaC) but also stimulate calcium-activated chloride channels (CACC). The relationship between ATP-mediated regulation of ENaC and CACC activity in cortical collecting duct cells has not been clearly defined. We used the mpkCCD(c14) cortical collecting duct cell line to determine effects of ATP on sodium (Na(+)) and chloride (Cl(-)) transport with an Ussing chamber system. ATP, at a concentration of 10(-6) M or less, did not inhibit ENaC-mediated short-circuit current (I(sc)) but instead stimulated a transient increase in I(sc). The macroscopic current-voltage relationship for ATP-inducible current demonstrated that the direction of this ATP response changes from positive to negative when transepithelial voltage (V(te)) is clamped to less than -10 mV. We hypothesized that this negative V(te) might be found under conditions of aldosterone stimulation. We next stimulated mpkCCD(c14) cells with aldosterone (10(-6) M) and then clamped the V(te) to -50 mV, the V(te) of aldosterone-stimulated cells under open-circuit conditions. ATP (10(-6) M) induced a transient increase in negative clamp current, which could be inhibited by flufenamic acid (CACC inhibitor) and BAPTA-AM (calcium chelator), suggesting that ATP stimulates Cl(-) absorption through CACC. Together, our findings suggest that the status of ENaC activity, by controlling V(te), may dictate the direction of ATP-stimulated Cl(-) transport. This interplay between aldosterone and purinergic signaling pathways may be relevant for regulating NaCl transport in cortical collecting duct cells under different states of extracellular fluid volume.
منابع مشابه
Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway.
Our previous studies in cortical collecting ducts isolated from rat kidneys have shown that vasopressin increases both sodium absorption and potassium secretion, while bradykinin inhibits sodium absorption without affecting potassium transport. To determine which anions are affected by these agents, we perfused cortical collecting ducts from rats treated with deoxycorticosterone and measured ne...
متن کاملActivation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells.
Dysregulation of urinary sodium chloride (NaCl) excretion can result in extracellular fluid (ECF) volume expansion and hypertension. Recent studies demonstrated that urinary nucleotide excretion increases in mice ingesting a high-salt diet and that these increases in extracellular nucleotides can signal through P2Y(2) receptors in the kidney collecting duct to inhibit epithelial Na(+) channels ...
متن کاملThe isolated C-terminus of polycystin-1 promotes increased ATP-stimulated chloride secretion in a collecting duct cell line.
Cyst expansion in autosomal dominant polycystic kidney disease (ADPKD) requires accumulation of fluid into the cyst lumen, which is probably driven by aberrant chloride secretion by the cyst lining epithelium. Extracellular ATP is a potent stimulus for chloride secretion in many epithelial systems, and provides a plausible mechanism for secretion in ADPKD. Therefore the link between polycystin-...
متن کاملRegulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system.
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role ...
متن کاملPendrin regulation in mouse kidney primarily is chloride-dependent.
Recent studies indicate that pendrin, an apical Cl-/HCO3- exchanger, mediates chloride reabsorption in the connecting tubule and the cortical collecting duct and therefore is involved in extracellular fluid volume regulation. The purpose of this study was to test whether pendrin is regulated in vivo primarily by factors that are associated with changes in renal chloride transport, by aldosteron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 4 شماره
صفحات -
تاریخ انتشار 2012